

A presentation by Dr Chris Shennan

25 May 2011

Use of Prepregs to Improve Spar Caps in Infused Blades

Hexcel – Company Profile

- Leading global provider of advanced composites
- Technology leader with largest portfolio of qualifications
- Primary markets: commercial aerospace, space & defense, wind energy and industrial
- Net Sales of \$1,174 million in 2010
- 4,000 employees worldwide
- 18 production sites (including JV in Malaysia)
- Headquarters in Stamford, CT, USA
- Listed on NYSE

Windsor, Co site opened in 2009 for production of wind energy materials

Prepreg Technology and Infusion

What are prepregs?

Why use prepregs, and where?

Impregnation of Fibre and Fabrics with Resin

**Prepreg production is
now highly industrialised
for optimum cost and quality**

Typical Prepreg Systems in Wind Energy

➤ **Resin systems**

M9G **280 J/g**

M9GF **230 J/g**

M19G **150 J/g**

➤ **Product forms (UD)**

Carbon 500-600 gsm

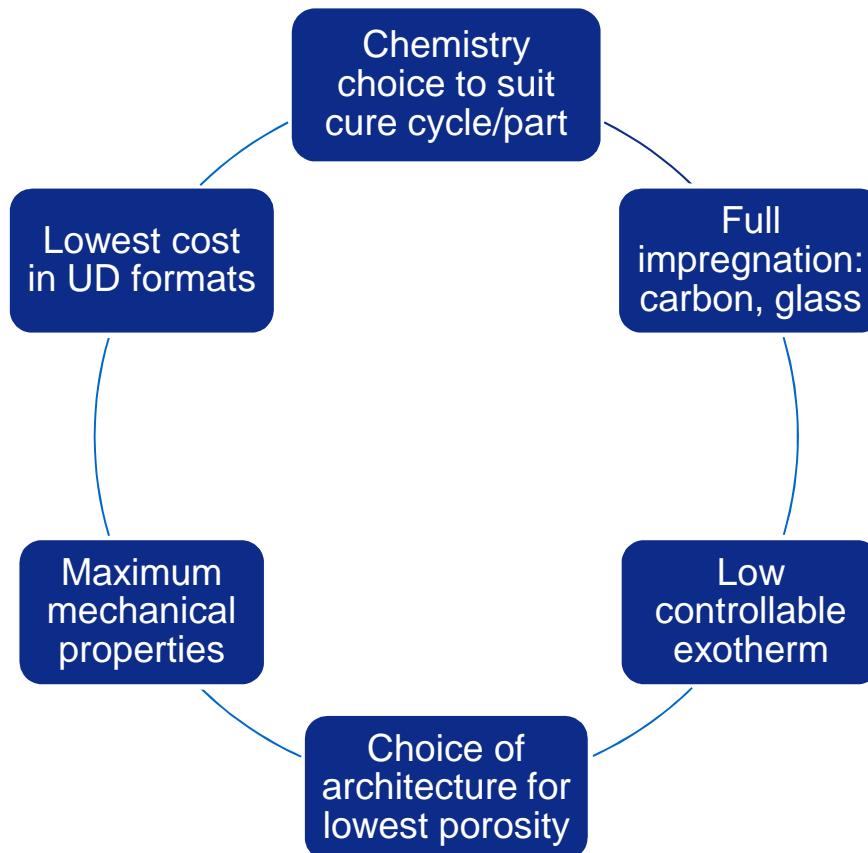
Glass 1000-3000 gsm

➤ **Cure cycles (ramps, dwells + cure times)**

~4 (M19G) to ~8 (M9G) hours when optimised

➤ **Storage at +5°C (6 month shelf life)**

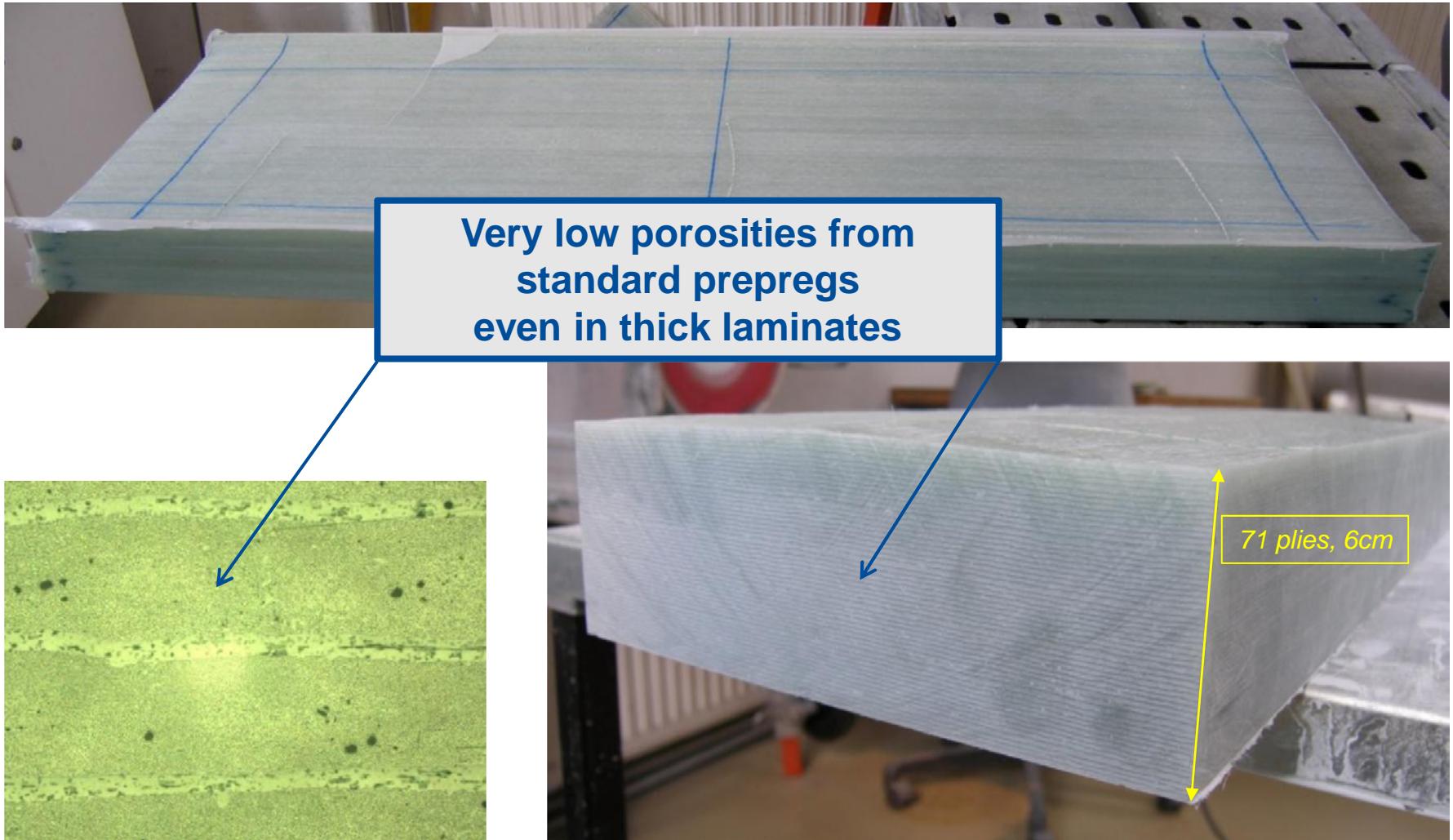
**Typical prepregs combine high areal weights with
full impregnation and low reaction enthalpies**


Blade technology: Infusion versus Prepreg

		Infusion	Prepreg
Raw Material Cost	\$/lb \$/m ³	~ 1.8 (resin + glass NCF) Foam: 2200 +	UD: 1.8 to 2.0/ Glass NCF ~ 2.5 Foam: 2500 -
Tooling Cost		++	--
Capex Requirements		+	-
Layup		-	+
Cure Cycle		- Up to 20 hours	++ Up to 10 hours
Blade Finishing		+	-
Health & Safety		-	+
Waste & Scrap		--	-
Throughput & Quality Control		--	++
Mechanical Performance		-	+

Both technologies have their pros and cons

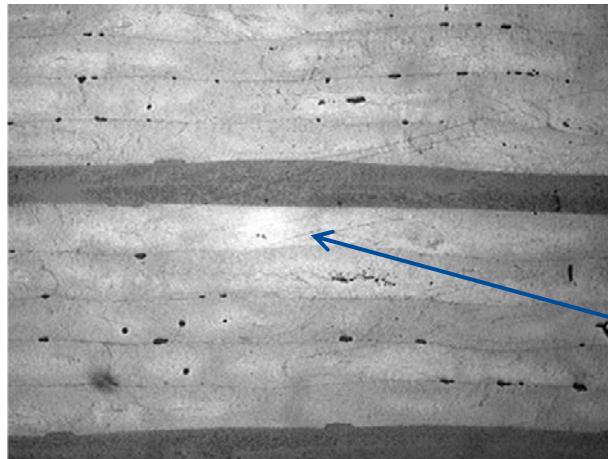
Major Features of Prepregs in Wind Energy



Prepregs are ideally suited for thick load critical structures in spar caps

Porosity in Thick Laminates

Prepregs in Thick Glass Laminates



Prepregs in Thick Carbon Laminates

Typical results in thick laminates using
600gsm carbon (HS) prepreg and standard technology
Porosity ~7%

Improvements in thick laminates using
Hexcel patented technology
Porosity <<1%

**Very low porosities even in thick
laminates: Selection of the right
prepreg architecture is key**

Mechanical Properties Using Prepreg and Infusion

Glass

Glass: Materials

Infusion:

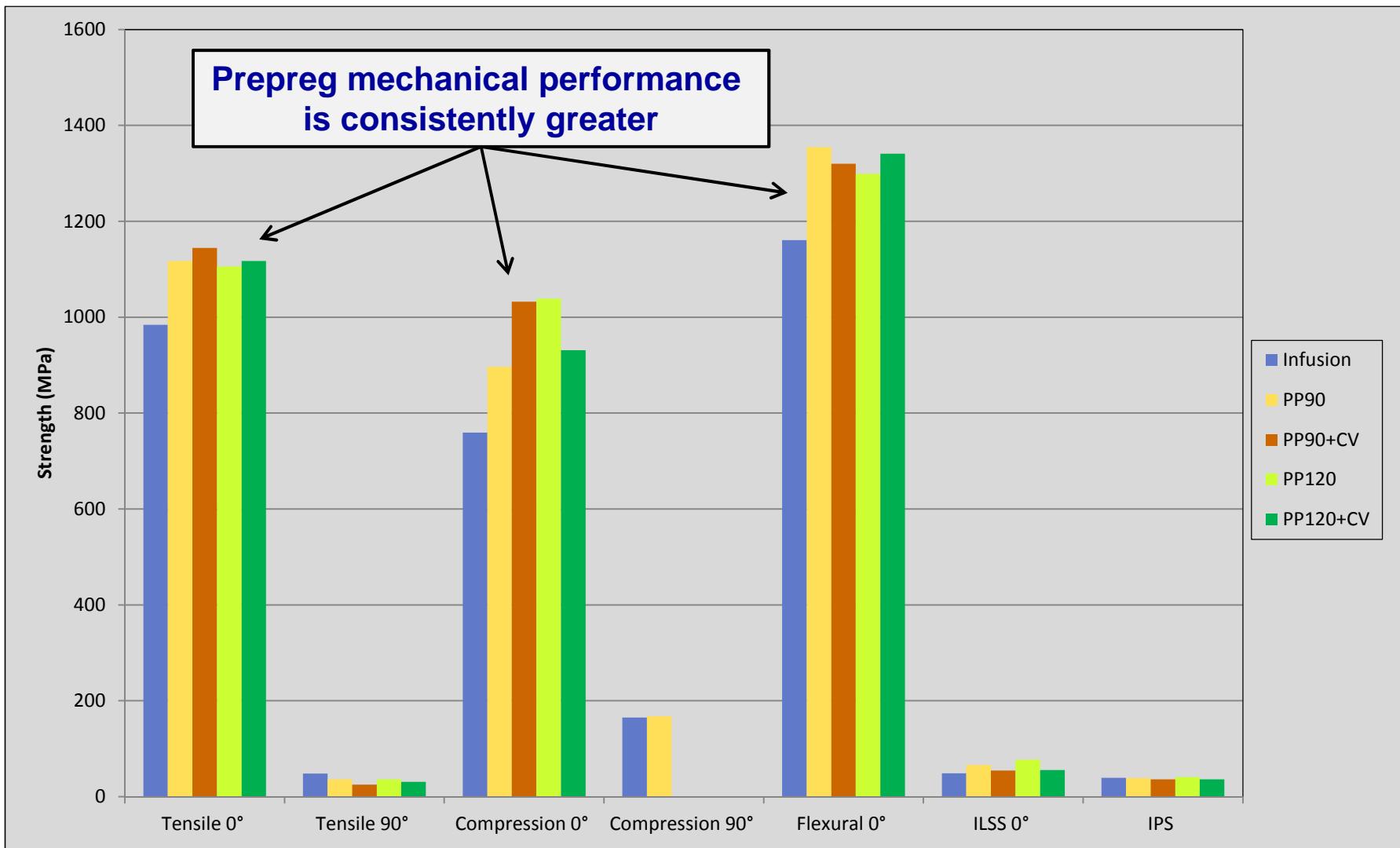
Reinforcement: LT1218 (UD1200 + slight reinforcement in 90°)

Resin: Hexion RIM 135

Cure at 90°C

Prepreg:

M9.6GLT/32%/1200(+CV)/G


Cure at 90°C ('PP90') and 120°C ('PP120')

Glass: Mechanical Properties

Property		Norm	Infusion	PP90	PP90+CV	PP120	PP120+CV
Tensile 0° *	Strength (MPa)	ISO527	984.3	1117.3	1144.2	1105.5	1117.1
	Modulus (GPa)		46.4	47.4	45.6	47.7	45.8
Tensile 90° *	Strength (MPa)	EN2850B	48.3	36.0	25.3	36.3	31.2
	Modulus (GPa)		9.66	12.7	8.87	10.7	12.2
Compression 0° *	Strength (MPa)	ISO14125	759.5	896.7	1032.6	1038.6	931.3
	Modulus (GPa)		47.1	48.7	49.0	49.0	48.3
Compression 90°	Strength (MPa)	ISO14130	165.4	168.0			
	Modulus (GPa)		13.9	15.9			
Flexural 0° *	Strength (MPa)	ISO14129	1160.5	1354.5	1320	1299	1341
	Modulus (GPa)		30.7	36.4	32.5	32.9	31
ILSS 0°	Strength (MPa)	ISO14130	48.7	66.2	54.7	77.3	55.8
IPS	Strength (MPa)	ISO14129	39.2	38.9	36.5	40.9	36.3
	Modulus (GPa)		3.40	4.50	4.2	3.9	4.2

* Normalised at FV=60%

Glass: Mechanical Properties

Mechanical Properties Using Prepreg and Infusion

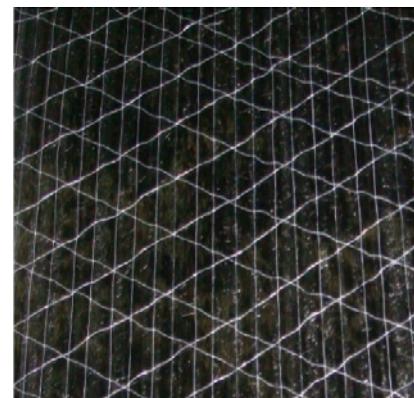
Carbon

Carbon: Materials

Infusion:

Reinforcement: UD600 low crimp T620

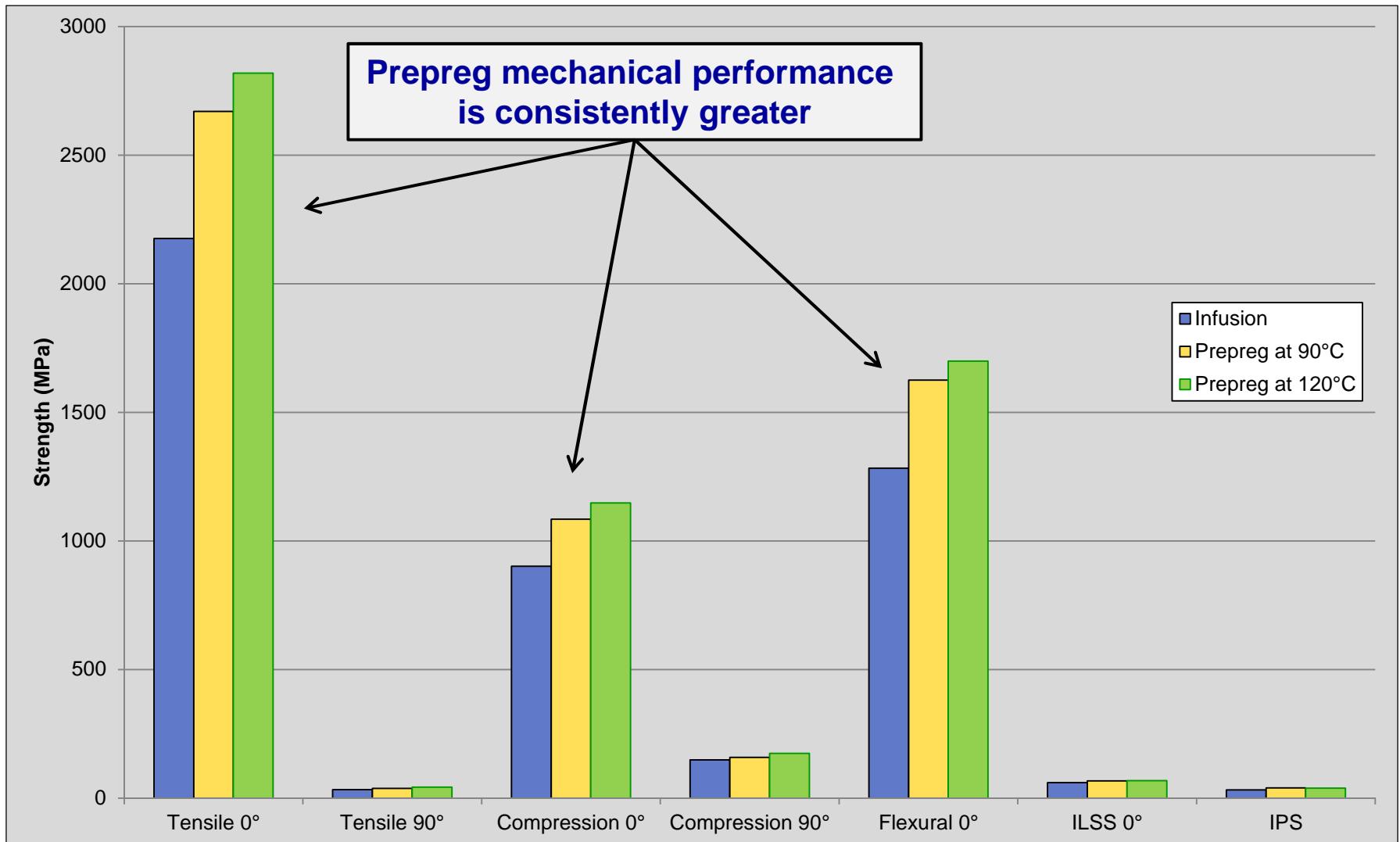
Resin: Hexion RIM 135


Cure at 90°C

Prepreg:

M9.6GLT/35%/UD600+8P/T620+PES

Cure at 90°C and 120°C



Carbon: Mechanical Properties

Property		Norm	Infusion	PP90	PP120
Tensile 0° *	Strength (MPa)	ISO527	2176,1	2670,2	2819,8
	Modulus (GPa)		130	125	128,4
Tensile 90°	Strength (MPa)	EN2850B	33	37,9	42,9
	Modulus (GPa)		8,4	8,2	7
Compression 0° *	Strength (MPa)	ISO14125	902	1085	1148
	Modulus (GPa)		128,5	125,1	119,8
Compression 90°	Strength (MPa)	ISO14130	148,6	158,3	173,6
	Modulus (GPa)		9	9,2	9,3
Flexural 0° *	Strength (MPa)	ISO14129	1283	1626	1700
	Modulus (GPa)		103,1	103,6	114,6
ILSS 0°	Strength (MPa)	ISO14130	60,6	66,7	67,6
IPS	Strength (MPa)	ISO14129	32,2	39,6	39,2
	Modulus (GPa)		4,2	4	3,9

* Normalised at FV=60%

Carbon: Mechanical Properties

Benefits in Blade Design from Using Prepregs

Blade Design Study

A study was commissioned at aerodyn to replace an infused Spar Cap in an all glass blade with one based on prepreg

To evaluate potential weight/ material savings

Process pros/ cons were excluded

Potential benefits for turbine loads excluded

Blade selected

aerodynBlade ae2.5-50.3 IECIII (usually made from resin-infused glass fiber)

Basis for the study

aerodyn data for infused laminates

Hexcel data (from IMA Dresden) for prepreg laminates (M9.6F/32%/1600+50/G+F, 2400 tex E-glass)

Optimisation of the blade design

Blade Design Study

Key conclusions (when an infused glass spar cap is replaced with a prepreg design)

13% weight reduction in the Spar Cap

33% saving in number of UD layers in Spar Cap mould

3.7% weight saving in the overall blade

(Equivalent to \$1200 material cost saving and \$750 process cost saving)

Design Study to be extended to carbon

Conclusions

- **Prepregs can be tailored to suit wind blade manufacture**
 - Matrix choice minimises exotherm in thick parts
 - Fast cure and low exotherm minimise cure cycle
 - Well-designed prepreg architecture minimises porosity
 - Reinforcements are reliably and fully impregnated, even with carbon and even in the thickest sections
- **Mechanical properties of typical UD prepregs are significantly higher than infused equivalents**
- **These properties translate into benefits in blade design that lead to savings of materials, weight and cost**

Carbon and glass prepregs are ideally suited to heavy load-critical structures in wind blades