

HexPly® M56

180°C (350°F) out-of-autoclave curing matrix

Product Data Sheet

Description

HexPly® M56 is a high performance epoxy matrix developed for out-of-autoclave curing of composite aircraft structures.

Benefits and Features

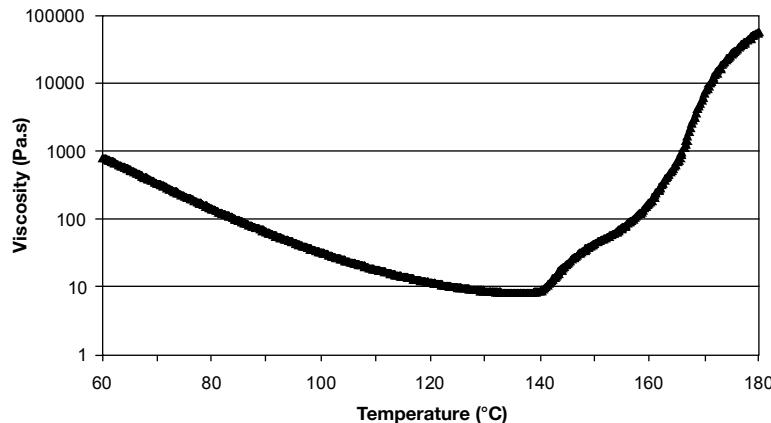
- Matrix specifically formulated for vacuum pressure only cure
- Product formats designed to optimize fiber volume
- Available as carbon UD tape, woven carbon, woven glass and metallic meshes for lightning strike protection
- Excellent drape, tack and out time performance
- 30 days room temperature tack life
- Excellent processability for Automated Tape Laying (ATL) and Advanced Fiber Placement (AFP)

Product Forms

Woven carbon: M56/40%/280H5/AS4-3K M56/40%/193PW/AS4-3K

M56/40%/285T2/AS4C-6K

UD carbon tape: M56/35%/UD134/AS7-12K M56/35%/UD268/IM7-12K

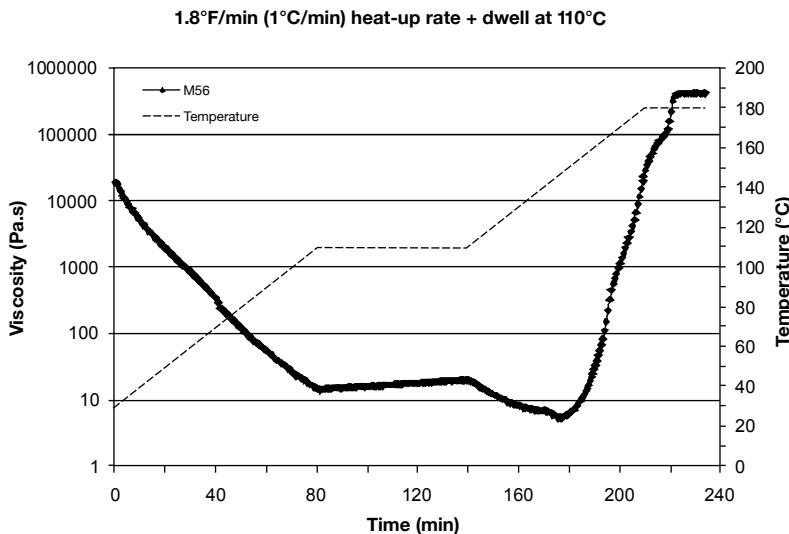

Woven glass: M56/37%/7781

Alternate fibers, reinforcement weights, resin contents, weave styles and metallic meshes for lightning strike protection can all be considered.

Resin Matrix Properties

Rheology

1.8°F/min (1°C/min) heat-up rate


HexPly® M56

180°C (350°F) out-of-autoclave curing matrix

HEXCEL®

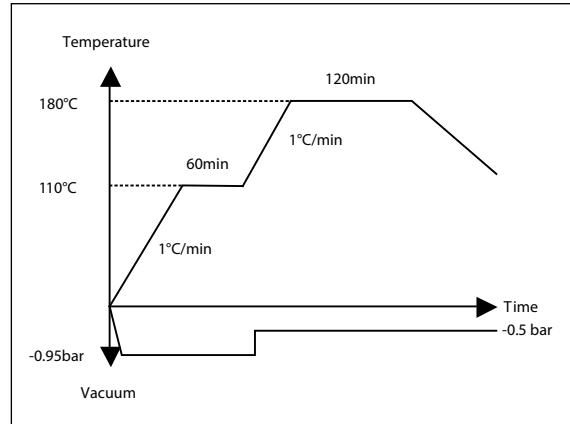
Product Data Sheet

Cure Cycle Viscosity Profiles

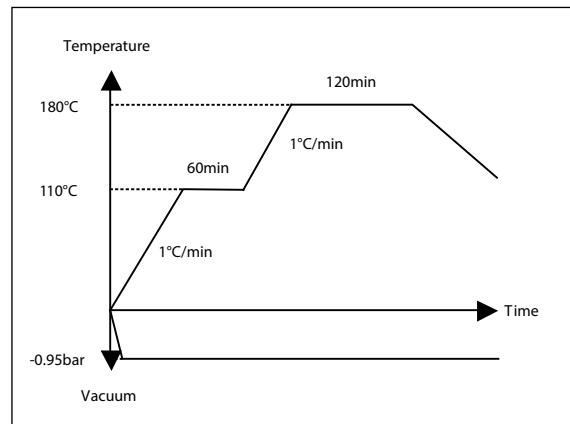
Prepreg Lay-up

To achieve the best monolithic laminate quality, the first ply should be vacuum debulked compacted to the mould cure tool at room temperature. The frequency of compaction depends on part size and complexity, but a good rule of thumb is to vacuum compact every subsequent 3 plies to ensure removal of air trapped during the lay-up process. Compact for 5 to 10 minutes.

During vacuum compaction of lay-up and for final laminate during cure, use a rigid edge breathing support (such as cork, high tack-high temperature sealant tape, cured silicone rubber or metal) to protect the plies at the edge of the part from pinching off and preventing air evacuation. The edge breathing support should be at least as high as but no more than 1/8 inch higher than the edge of the laminate panel or edge band of sandwich panel. For sandwich panels, vacuum compact after each ply (5 to 10 minutes), including adhesive plies and core placement.


If after the final compaction, rounded edges are evident in the component these will need to be cut away to re-open air paths.

Prepreg Curing Conditions


Typical Oven Cure Monolithic Part

1. Apply full vacuum (-28 inches Hg, -0.95bar)
2. Ramp at 2 - 5°F/min (1 - 3°C/min) to 230± 10°F (110 ± 5°C)
3. Hold at 230± 10°F (110 ± 5°C) for 60 ± 5min
4. Reduce vacuum to -15 inches Hg (-0.5bar)
5. Ramp at 2 - 5°F/min (1 - 3°C/min) to 355 ± 10°F (180 ± 5°C)
6. Hold at 355 ± 10°F (180 ± 5°C) for 120 + 30, - 0 min
7. Cool at ≤ 5°F/min under vacuum
8. Release vacuum when laminate temperature is below 140°F

Typical Oven Cure Sandwich Structure – Honeycomb or Foam

1. Apply full vacuum (-28 inches Hg, -0.95bar)
2. Ramp at 2 - 5°F/min (1 - 3°C/min) to 230± 10°F (110 ± 5°C)
3. Hold at 230± 10°F (110 ± 5°C) for 60 ± 5min
4. Ramp at 2 - 5°F/min (1 - 3°C/min) to 355 ± 10°F (180 ± 5°C)
5. Hold at 355 ± 10°F (180 ± 5°C) for 120 + 30, - 0 min
6. Cool at ≤ 5°F/min under vacuum
7. Release vacuum when laminate temperature is below 140°F

Defined heat-up rates will vary depending on the oven, autoclave dimensions, the mass of tooling used and the size and thickness of the component to be manufactured.

HexPly® M56

180°C (350°F) out-of-autoclave curing matrix

Product Data Sheet

Cured Prepreg Properties

Property	Units	M56/40% /280H5/ AS4-3K	M56/40% /285T2/ AS4C-6K	M56/40% /193PW/ AS4-3K
Fiber		AS4	AS4C	AS4
Weave		5HS	2 x 2T	PW
Fiber Mass	g/m ² (oz/yd ²)	280 (8.25)	285 (8.40)	193 (5.67)
Nominal Prepreg Mass	g/m ² (oz/yd ²)	467 (13.76)	475 (14.00)	322 (9.48)
Measured Cured Ply Thickness	mm (inch)	0.292 (0.0115)	0.316 (0.0124)	0.214 (0.0084)
Measured Calculated Fiber Volume	%	50.5	50.3	50.1
Cured Resin Density	g/cm ³ (lbs/ft ³)		1.21 (75.54)	
Fiber Density	g/cm ³ (lbs/ft ³)	1.79 (112)	1.79 (112)	1.79 (112)
Measured Calculated Laminate Density	g/cm ³ (lbs/ft ³)	1.50 (93.6)	1.50 (93.6)	1.50 (93.6)

Test	Units	M56/40%/280H5/ AS4-3K	M56/40%/285T2/ AS4C-6K	M56/40%/193PW/ AS4-3K
Glass Transition Temp. (Ext. onset E')	°C (°F)	193 (379)	194 (381)	219 (426)
Method		EN6032		ASTM D1640
Tensile Strength	MPa (ksi)	897 (130)	787 (114)	924 (134)
Tensile Modulus	GPa (msi)	68.2 (9.89)	67.0 (9.72)	65.9 (9.56)
Method		EN2597B		ASTM D3039
Compression Strength	MPa (ksi)	852 (124)	807 (117)	848 (123)
Compression Modulus	GPa (msi)	58.6 (8.50)	58.0 (8.41)	61.5 (8.92)
Method		EN2850 B		SACMA-1R
ILSS	MPa (ksi)	69.2 (10.0)	65.0 (9.4)	74.1 (10.8)
Method		EN 2563		
Interlaminar Shear Strength	MPa (ksi)	121 (17.5)	99.0 (14.4)	128 (18.6)
In-plane Shear Modulus	GPa (msi)	4.10 (0.59)	3.70 (0.54)	3.50 (0.51)
Method		EN6031		ASTM D3518

Note:

These are average values showing typical data and not guaranteed minimum values.

Comments:

Data generated following oven cure at 180°C (356°F) for 120min with 60min dwell at 110°C (230°F)

Measured cured ply thickness figures are based on zero bleed

Fabric samples were tested in the warp direction

Tension and Compression data normalised to Vf = 60% for UD carbon, 56% for woven carbon & 48% for woven glass Cured Prepreg Properties

HexPly® M56

180°C (350°F) out-of-autoclave curing matrix

Product Data Sheet

Cured Prepreg Properties (continued)

Property	Units	M56/35%/UD268/ IM7-12K	M56/35%/UD134/ AS7-12K	M56/37%/7781
Fiber		IM7	AS7	E-glass
Weave		UD	UD	8HS
Fiber Mass	g/m ² (oz/yd ²)	268 (7.90)	134 (3.95)	300 (8.84)
Nominal Prepreg Mass	g/m ² (oz/yd ²)	394 (11.60)	206 (6.07)	476 (14.03)
Measured Cured Ply Thickness	mm (inch)	0.2530 (0.0100)	0.134 (0.0053)	0.263 (0.0104)
Theoretical Calculated Fiber Volume	%	58.8	56.2	44.6
Cured Resin Density	g/cm ³ (lbs/ft ³)		1.21 (75.54)	
Fiber Density	g/cm ³ (lbs/ft ³)	1.78 (111)	1.79 (112)	2.54 (159)
Measured Calculated Theoretical Calculated Laminate Density	g/cm ³ (lbs/ft ³)	1.53 (95.5)	1.53 (95.5)	1.81 (112)

Test	Units	M56/35%/UD268/ IM7-12K	M56/35%/UD134/ AS7-12K	M56/37%/7781
Glass Transition Temp. (Ext. onset E')	°C (°F)	204 (399)	197 (387)	211 (412)
Method			EN6032	
Tensile Strength	MPa (ksi)	2730 (396)	2330 (338)	470 (68.2)
Tensile Modulus	GPa (msi)	182 (26.4)	141 (20.4)	25.0 (3.63)
Method			EN2597 B	
Compression Strength	MPa (ksi)	1550 (225)	1308 (190)	-
Compression Modulus	GPa (msi)	156 (22.6)	129 (18.7)	-
Method			EN2850 B	
ILSS	MPa (ksi)	98.6 (14.3)	94.4 (13.7)	67.0 (9.72)
Method			EN2563	
Interlaminar Shear Strength	MPa (ksi)	81 (11.8)	115 (16.7)	-
In-plane Shear Modulus	GPa (msi)	4.50 (0.65)	4.10 (0.59)	-
Method			EN6031	

Note:

These are average values showing typical data and not guaranteed minimum values.

Comments:

Data generated following oven cure at 180°C (356°F) for 120min with 60min dwell at 110°C (230°F)

Measured cured ply thickness figures are based on zero bleed

Fabric samples were tested in the warp direction

Tension and Compression data normalised to Vf = 60% for UD carbon, 56% for woven carbon & 48% for woven glass

HexPly® M56

180°C (350°F) out-of-autoclave curing matrix

Product Data Sheet

Prepreg Storage Life

Tack Life: 30 days at 23°C (73°F)

Out Life: 35 days at 23°C (73°F)

Shelf Life: 18 months at -18°C (0°F) (from date of manufacture)

Definitions

Shelf Life: The maximum storage life for HexPly® prepreg, from date of manufacture, when stored continuously, in a sealed moisture-proof bag, at -18°C (0°F). To accurately establish the exact expiry date, consult the box label.

Tack Life: The time, at room temperature, during which prepreg retains enough tack for easy component lay-up.

Out Life: The maximum accumulated time allowed at room temperature between removal from the freezer and cure.

For maximum storage life, HexPly® M56 prepgs should be stored continuously at -18°C (0°F). After removal from cold storage, prepreg should be allowed to reach room temperature before opening the polythene bag to prevent condensation (a full roll in its packaging can take up to 48 hours).

Precautions For Use

A Safety Data Sheet is available for this product. The usual precautions when handling uncured synthetic resins and fibrous materials should be observed. The use of clean, disposable, inert gloves provides protection for the operator and avoids contamination of material and components.

For more information

Hexcel is a leading worldwide supplier of composite materials to aerospace and industrial markets.

Our comprehensive range includes:

- HexTow® carbon fibers
- HexForce® reinforcements
- HiMax® multiaxial reinforcements
- HexPly® prepgs
- HexMC®-i molding compounds
- HexFlow® RTM resins
- HexBond™ adhesives
- HexTool® tooling materials
- HexWeb® honeycombs
- Acousti-Cap® sound attenuating honeycomb
- Engineered core
- Engineered products
- Polyspeed® laminates & pultruded profiles
- HexAM® additive manufacturing

For U.S. quotes, orders and product information call toll-free 1-800-688-7734. For other worldwide sales office telephone numbers and a full address list, please go to:

<https://www.hexcel.com/contact>

©2020 Hexcel Corporation – All rights reserved. Hexcel Corporation and its subsidiaries (“Hexcel”) believe that the technical data and other information provided herein was materially accurate as of the date this document was issued. Hexcel reserves the right to update, revise or modify such technical data and information at any time. Any performance values provided are considered representative but do not and should not constitute a substitute for your own testing of the suitability of our products for your particular purpose. Hexcel makes no warranty or representation, express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose, and disclaims any liability arising out of or related to, the use of or reliance upon any of the technical data or information contained in this document.