

HiFlow® RTM200

130°C Bi-component Epoxy System for Resin Transfer Molding and Infusion Technologies

Product Data Sheet

Description

HiFlow® RTM200 is an aerospace bi-component toughened resin system with liquid Part A & Part B specially developed for Liquid Composite Molding technologies, such as LRI and RTM. Various applications for HiFlow® RTM200 exist throughout the UAM and UAV markets such as infused blades and other structures.

Delivered as a bi-component system, HiFlow® RTM200 provides several benefits over a mono-component resin: Air shipment is allowed, and storage at $23\pm 5^\circ\text{C}$ for 12 months and larger packages are possible. HiFlow® RTM200 has a low viscosity, allowing for easy processing. HiFlow® RTM200 has a cure temperature of 130°C and a service temperature of 90°C based on wet Tg. HiFlow® RTM200 Part A:B mixing ratio by weight is 100 : 81.

HiFlow® RTM200 resin can be used in combination with HexForce®, HiTape® and HiMax® reinforcements. HiFlow® RTM200 is fully compatible with Hexcel binders and veils. They provide easy preforming properties and reinforcement dimensional stability.

Advantages

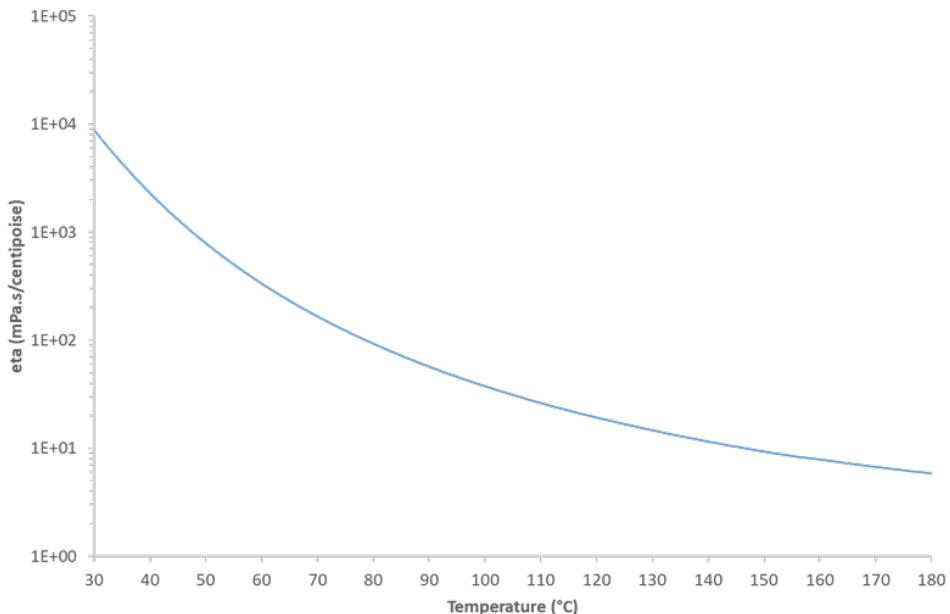
- High glass transition temperatures: dry¹: Tg > 135°C ; wet²: Tg > 120°C
- < 100mPa.s at process temperatures
- Toughened system
- Liquid Part A & Part B at room temperature
- Longer shelf life (12 months at RT), as bicomponent system
- Flexible cure cycles available
- Low exotherm system

⁽¹⁾ Dry: 24h at 105°C

⁽²⁾ Wet: 14 days in water at 70°C

HiFlow® RTM200

130°C Bi-component Epoxy System for Resin Transfer Molding and Infusion Technologies



Product Data Sheet

Part A & Part B Properties

Viscosity

● Part A

Testing conditions on page 9

Figure 1: Rheology Profile of HiFlow® RTM200 Part A, 3°C/min Ramp Rate

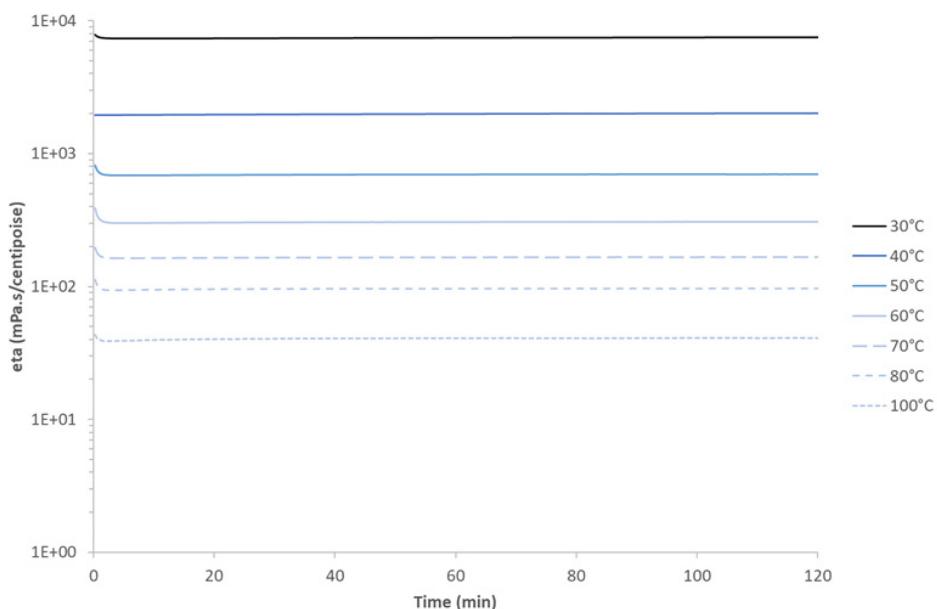


Figure 2: Isothermal Viscosities of HiFlow® RTM200 Part A

HiFlow® RTM200

130°C Bi-component Epoxy System for Resin Transfer Molding and Infusion Technologies

Product Data Sheet

● Part B

Testing conditions on page 9

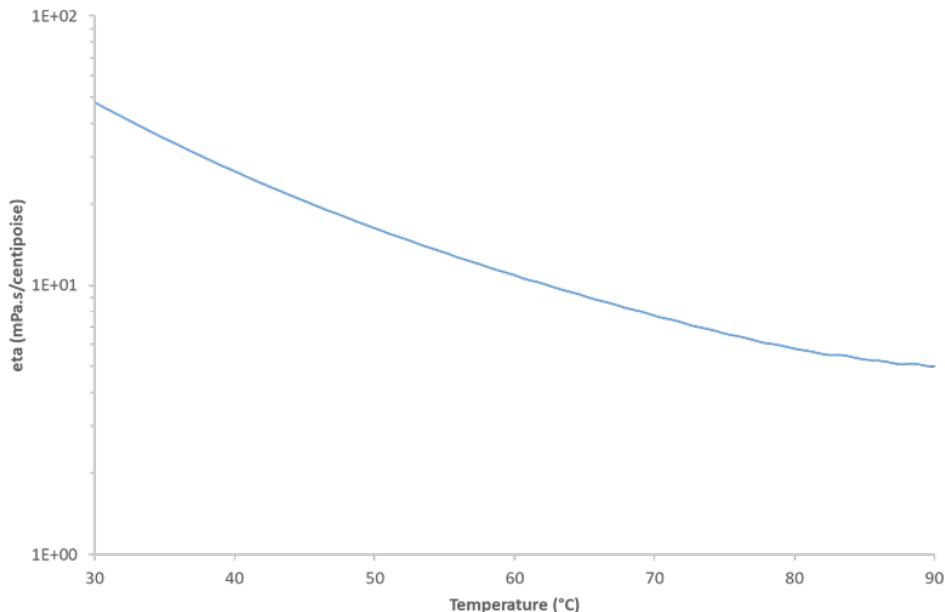


Figure 3: Rheology Profile of HiFlow® RTM200 Part B, 3°C/min Ramp Rate

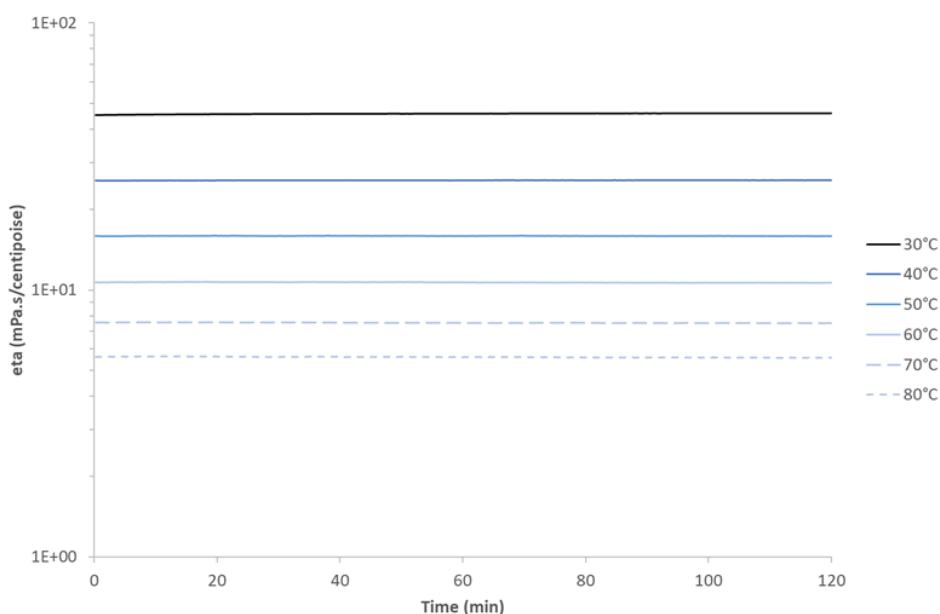


Figure 4: Isothermal Viscosities of HiFlow® RTM200 Part B

HiFlow® RTM200

130°C Bi-component Epoxy System for Resin Transfer Molding and Infusion Technologies

Product Data Sheet

RTM200 (After Mix) Uncured Resin Properties

Viscosity

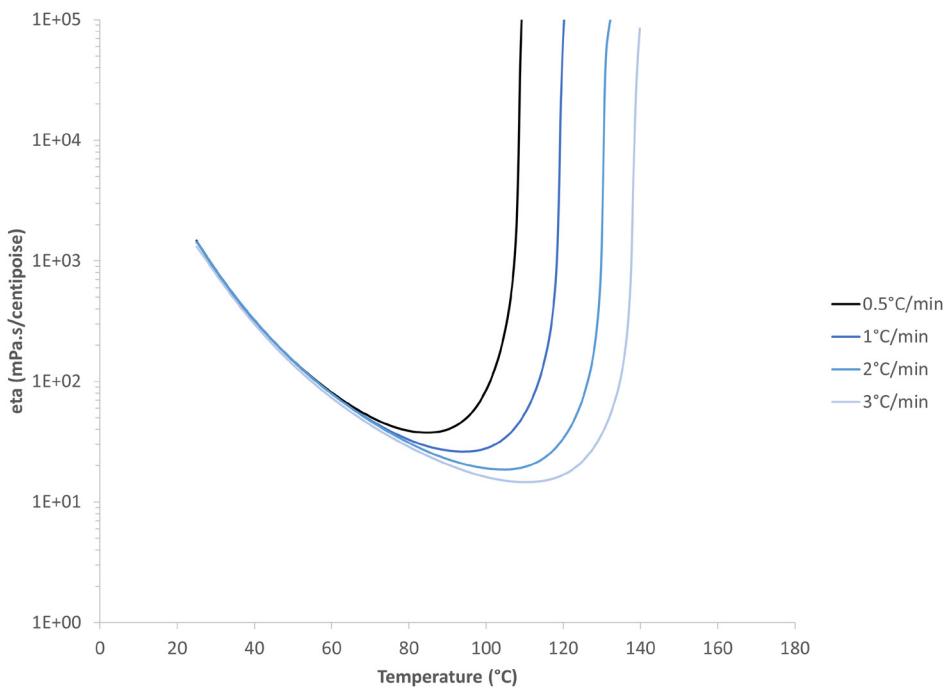


Figure 5: Rheology Profile of HiFlow® RTM200 (After Mix)

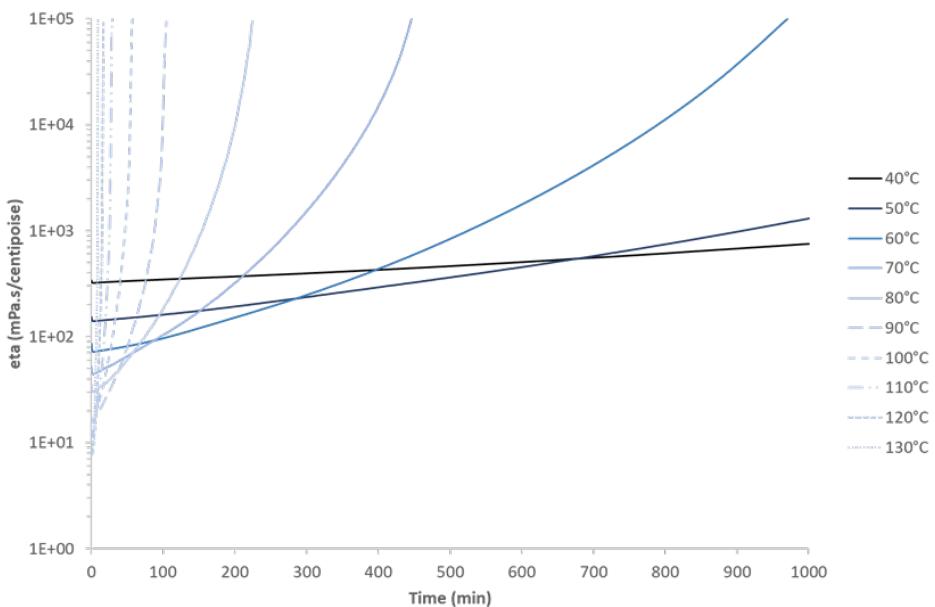


Figure 6: Isothermal Viscosities of HiFlow® RTM200 (After Mix)

HiFlow® RTM200

130°C Bi-component Epoxy System for Resin Transfer Molding and Infusion Technologies

Product Data Sheet

Process Window

Testing conditions on page 9

Temperature (°C)	Time to reach 1000 mPa·s (h:min)	Time to reach 200 mPa·s (h:min)
40	> 16:00	Viscosity > 200 mPa·s
50	15:08	—
60	8:45	4:18
70	4:36	2:42
80	2:34	1:43
90	1:28	1:08
100	0:55	0:53
110	0:25	0:21
120	0:15	0:13
130	0:08	0:07

Thermokinetics

Standard DSC parameters			
T _g midpoint (°C)	Enthalpy (J/g)	T peak (°C)	T onset (°C)
-38	300	176	137

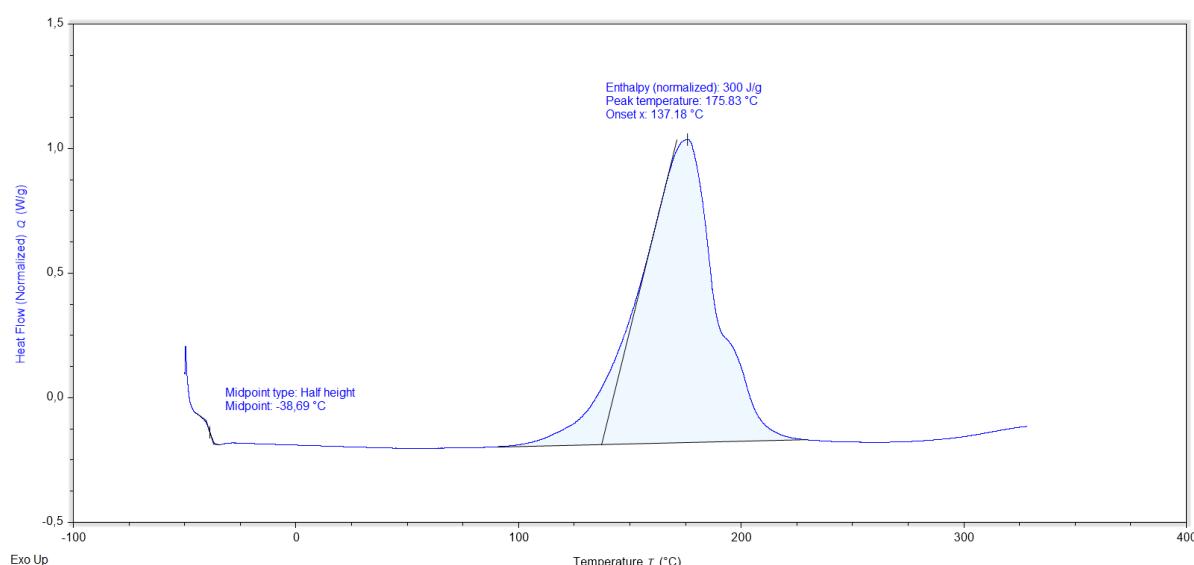
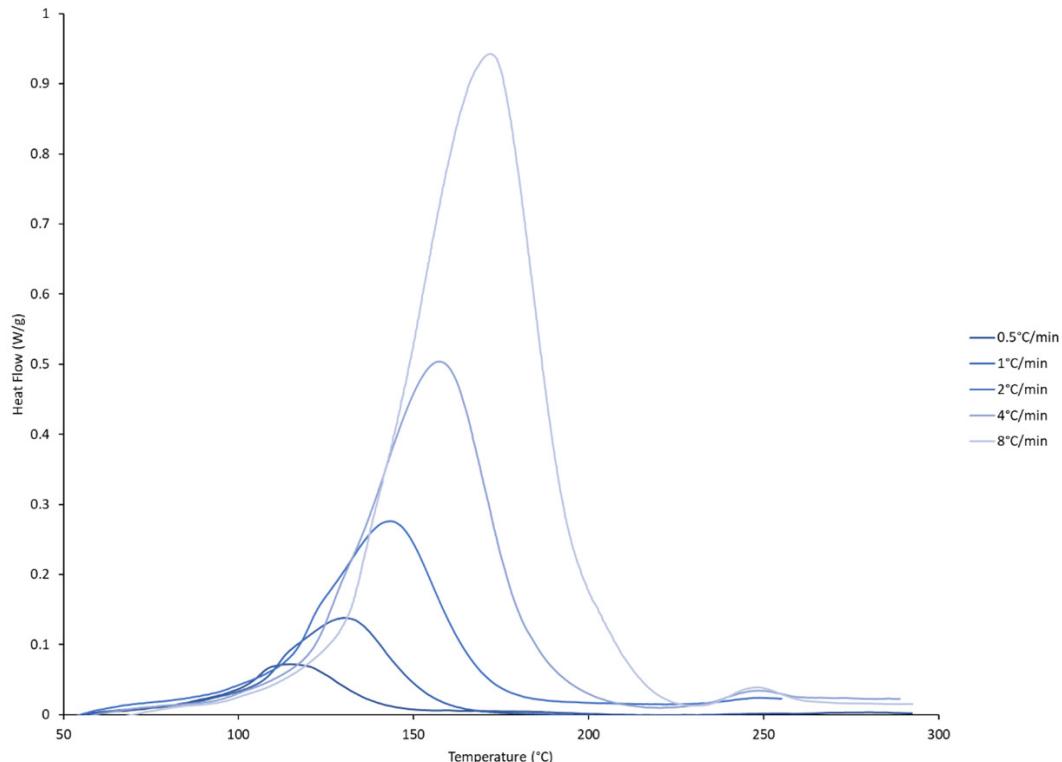


Figure 7: Standard DSC of HiFlow® RTM200 (After Mix)


HiFlow® RTM200

130°C Bi-component Epoxy System for Resin Transfer Molding and Infusion Technologies

Product Data Sheet

Testing conditions on page 9

Figure 8: Standard DSC at Various Heating Rates of HiFlow® RTM200 (After Mix)

HiFlow® RTM200

130°C Bi-component Epoxy System for Resin Transfer Molding
and Infusion Technologies

Product Data Sheet

Processing Recommendations

Testing conditions on page 9

For uncured resin handling, please refer to "[Hexcel HiFlow® RTM200 Safety Processing Guidelines](#)" document.

- Mixing ratio by weight (A:B) : 100:81

Process Parameters (Infusion or RTM)

- Preheat resin at 25 - 40°C (77-104°F)
(Please refer to "[Hexcel HiFlow® RTM200 Safety Processing Guidelines](#)" document for maximum preheating time.)
- Mold temperature: between 60°C and 80°C (140 - 176°F), at constant temperature
- Injection / infusion lines: 25 - 40°C (77 - 104°F)
- Mold / bagging leakage: below 15 mbar (0,22 Psi) in 5min
- Vacuum Infusion: below 5 mbar (0,07 Psi)
- RTM Piston Pressure: atm to 5 bars (73 Psi)

Cure Cycle

- 60 min minimum at 130°C (266°F) - no post cure required (degree of cure: $\alpha > 95\%$)

*For additional technical information on processing & curing, please contact **Hexcel Technical Support**.*

HiFlow® RTM200

130°C Bi-component Epoxy System for Resin Transfer Molding and Infusion Technologies

Product Data Sheet

Cured Resin Mechanical Properties

Neat Resin Cure cycle (Convection oven accurate to $\pm 3^\circ\text{C}$)

Testing conditions on page 9

⁽¹⁾ Dry: 24h at 105°C

⁽²⁾ Wet: 14 days in water at 70°C

Parameter (Unit)	Value		
K1c (MPa.m ^{1/2})	1.08		
Density (g/cm ³)	1.195		
Coefficient of thermal expansion (10^{-6} K^{-1})	-50°C to 20°C	20°C to 100°C	100°C to 120°C
Moisture uptake (%)	61		
	71		
	80		
	1 – 2%		

DMA (EN6032)

Tg (°C)	Dry ¹	Wet ²
Onset	138	128
Loss Modulus	144	135
Tanδ	148	141

Laminate Mechanical Properties

Reinforcement: HexForce® G0926 HS-6K, 375g/m² 5H Satin (WITH E01 BINDER) FVF=58%.

⁽³⁾ Dry: 23 \pm 5°C / 50 \pm 7% RH

Test/Property	Method	Lay Up	Condition	Value	
				SI Units	US Units
Tensile Strength	ISO527-4 T3	(0)6	RT/dry ³	899 MPa	130 ksi
Tensile Modulus			RT/dry	67.6 GPa	9.8 Msi
Compression Strength	EN2850B	(0)6	RT/dry	722 MPa	105 ksi
Compression Modulus			RT/dry	60 GPa	8.7 Msi
ILSS	EN2563	(0)6	RT/dry	64.9 MPa	9.4 ksi
In-Plane Shear Strength	EN6031	(+/-)s	RT/dry	104 MPa	15.1 ksi
In-Plane Shear Modulus			RT/dry	4.3 GPa	0.62 Msi
Open Hole Compression Strength	EN6036	(+/-90)2s	RT/dry	285 MPa	41.4 ksi
Open Hole Tensile Strength	EN6035	(+/-90)s	RT/dry	385 MPa	55.9 ksi
Bearing Strength	EN6037	(+/-90)s	RT/dry	873 MPa	126.6 ksi
CAI [30 J]	EN6038	(+/-)3s	RT/dry	227 MPa	32.9 ksi

HiFlow® RTM200

130°C Bi-component Epoxy System for Resin Transfer Molding
and Infusion Technologies

Product Data Sheet

Testing Conditions

Uncured Resin Data

Isothermal Viscosities: EN6043

Gap: 0.5mm

Shear rate: 40 1/s

Strain: 4%

Standard DSC: EN6041

Heating rate: 10°C/min

Temperature range: from -50°C to 330°C

Cured Resin Data

K1c: ASTM D5045

Density: ISO1183

DMA: ASTM D7028

Mode: fixed frequency, simple cantilever

Amplitude: 30µm

Frequency: 1Hz

Heating rate: 5°C/min

Temperature range: 25°C to 200°C

Laminate Mechanical Data

Compression: EN2850B

Tensile: ISO527-4 T3

OHC: EN6036

OHT: EN6035

CAI: EN6038

IPS: EN6031

ILSS: EN2563

DMA: ASTM D7028

Mode: fixed frequency, simple cantilever

Amplitude: 30µm

Frequency: 1Hz

Heating rate: 5°C/min

Temperature range: from 25°C to 200°C

HiFlow® RTM200

130°C Bi-component Epoxy System for Resin Transfer Molding
and Infusion Technologies

Product Data Sheet

Transport and Storage of Uncured Resin

Product classification & transport conditions: Please refer to "[HiFlow® RTM200 Safety Data Sheet](#)."

For ease of transportation and storage, HiFlow® RTM200 is only available as a bi-component version.

Shelf Life Before Mixing (Part A & Part B)

- 12 months at room temperature at 23 ± 5°C

Shelf Life After Mixing

- 3 days at 23 ± 5°C

For more information

Hexcel is a leading worldwide supplier of composite materials to aerospace and industrial markets.

Our comprehensive range includes:

- HexTow® carbon fibers
- HexForce® reinforcements
- HiMax® multiaxial reinforcements
- HexPly® prepgres
- HexMC® molding compounds
- HexFlow® RTM resins
- HexBond® adhesives
- HexTool® tooling materials
- HexWeb® honeycomb
- Acousti-Cap® sound attenuating honeycomb
- Engineered core
- Engineered products
- Polyspeed® laminates
- & pultruded profiles

For U.S. quotes, orders and product information call toll-free 1-800-688-7734. For other worldwide sales office telephone numbers and a full address list, please go to:

<https://www.hexcel.com/contact>

©2025 Hexcel Corporation – All rights reserved. Hexcel Corporation and its subsidiaries (“Hexcel”) believe that the technical data and other information provided herein was materially accurate as of the date this document was issued. Hexcel reserves the right to update, revise or modify such technical data and information at any time. Any performance values provided are considered representative but do not and should not constitute a substitute for your own testing of the suitability of our products for your particular purpose. Hexcel makes no warranty or representation, express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose, and disclaims any liability arising out of or related to, the use of or reliance upon any of the technical data or information contained in this document.